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Abstract

A simple derivation of the tangent stiffness matrix for a prestressed pin-jointed structure is given, and is used to com-
pare the diverse formulations that can be found in the literature for finding the structural response of prestressed
structures.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper gives a simple derivation of the tangent stiffness matrix for a prestressed pin-jointed structure:
the stiffness is found by differentiating equilibrium expressions at nodes of the structure with respect to the
position of the nodes. It uses this derivation to compare the diverse formulations that are applied to under-
standing the mechanics of prestressed structures by different academic communities.

Two basic approaches to understanding the mechanics of pin-jointed structures are common. In the
computational mechanics approach, the results of computations are used to gain insight into structural re-
sponse. In this context, it is sensible to use an exact tangent stiffness matrix, as described by e.g. Argyris and
Scharpf (1972). Another approach is to gain understanding through the basic formulation of the problem:
an exact formulation is less important, and it may prove sensible to use a simplified set of equations. This
paper shows the links between various such formulations by describing the exact tangent stiffness matrix
using equilibrium and stress matrices, each of which has been used individually to gain understanding of
structural response in different circumstances.
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Using the equilibrium matrix to understand structural response is described in e.g. Pellegrino and
Calladine (1986), or Pellegrino (1993). A basic assumption is that the key structural action comes through
the deformation of members—a common assumption in structural engineering. Study of the equilibrium
matrix (or equivalently its transpose, the compatibility matrix) enables small movements of the structure
to be decomposed into movements that cause deformation of members, and mechanisms that to a first order
approximation cause no deformation of members. It is also possible to find various states of self-stress,
where the structure is stressed even under zero external load. The fact that a structure has a mechanism
(by the definition given here) does not imply that this motion has no stiffness when the structure is stressed,
and Pellegrino (1990) and Calladine and Pellegrino (1991) further describe a method where this stiffness
may be found using product forces. This paper will show that in fact this extension corresponds to a reduced
form of the stress matrix, described next.

The stress matrix is widely used in the mathematical rigidity theory literature, see e.g. Connelly and
Terrell (1995) or Connelly and Back (1998). Here, the basic structural action is assumed to come about
through the reorientation of stressed bars. The aim of this work is not conventional modelling of structures,
but answering questions such as when a particular set of links implies a unique configuration of nodes. Of
particular relevance here is that the stress matrix is used to understand whether unconventional structures
such as tensegrities are �prestress stable� (Connelly and Whiteley, 1996).

This paper will show that to find structural stiffness, the equilibrium matrix, and the stress matrix, are
usefully complementary. When combined with the definition in this paper of a �modified axial stiffness� for a
prestressed bar, the equilibrium matrix and the stress matrix together can be used to give the correct tangent
stiffness matrix, without sacrificing the insight that the simplified methods give.

The paper is structured as follows. This introduction will conclude by introducing an example structure.
Section 2 will describe the formulation itself, and this will be compared with earlier work in Section 3. The
example structure will be analysed in Sections 4 and 5 will conclude the paper.
O
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Fig. 1. A simple example structure, analysed in Section 4. It consists of four joints, numbered 1 to 4, all of which lie in the 1-2 plane.
Joint 1 is fully restrained, joint 2 is allowed to move only in the 1-direction, joint 3 is restrained to lie in the 1-2 plane, and joint 4 is
completely free. The joints are connected by six bars; the two crossing bars are not connected.
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1.1. Introduction to the example structure

The structure shown in Fig. 1 will be used as an example. Considered in 2D, with out-of-plane motion
restricted, the structure has no mechanisms: conventional structural action renders it stiff. Considered in
3D, however, there is a mechanism in which the completely unrestrained joint moves out of plane. The
structure can sustain a state of self-stress, with the two cross-bars in compression and the outer bars in ten-
sion, or vice versa, and the tangent stiffness matrix will be used to clarify if the state of self-stress will stiffen
the out-of-plane mechanism.
2. Tangent stiffness formulation

This section introduces a new derivation for the tangent stiffness, found by initially writing down the
equations of equilibrium for the external forces at each of the nodes of the structure, and then differenti-
ating these forces with respect to movement of the nodes. For simplicity, the tangent stiffness will first
be found for a single bar, before a general pin-jointed structure is considered. The derivation will equally
apply in two or three dimensions.

2.1. A single bar

Fig. 2 shows a single bar floating in space. Forces f1 and f2 are in equilibrium with an internal tension in
the bar t, where f1 and f2 are two- or three-dimensional vectors as appropriate, with components f1i and f2i
respectively. The nodes of the bar have position vectors, x1 and x2, relative to some reference, with com-
ponents x1i and x2i respectively. The bar is currently of length l, and a unit vector n = (x1�x2)/l is parallel
to the bar.

Equilibrium at nodes 1 and 2 can be written in terms of the bar tension, t, in either vector, or component
form
F

f1 ¼ nt; f 1i ¼ nit ð1Þ

f2 ¼ �nt; f 2i ¼ �nit ð2Þ

Alternatively, the equilibrium equations can be written using the tension coefficient in the bar, t̂ ¼ t=l.
f1 ¼ ðx1 � x2Þ̂t; f 1i ¼ ðx1i � x2iÞ̂t ð3Þ

f2 ¼ ð�x1 þ x2Þ̂t; f 2i ¼ ð�x1i þ x2iÞ̂t ð4Þ
f1

f2

node 1 (x1) 

node 2 (x2) 

n

ig. 2. A single bar connecting two nodes, at positions x1 and x2; a unit vector along the bar from x2 to x1 is given by n.
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In order to find the tangent stiffness, differentiating the component equilibrium expressions in (3) and (4)
with respect to the j-coordinate of node 1 gives
of1i
ox1j

¼ ðx1i � x2iÞ
ôt
ox1j

þ diĵt ð5Þ

of2i
ox1j

¼ ð�x1i þ x2iÞ
ôt
ox1j

� diĵt ð6Þ
where dij = 1 if i = j, dij = 0 if i5 j. Similarly differentiating with respect to the j-coordinate of node 2 gives
of1i
ox2j

¼ ðx1i � x2iÞ
ôt
ox2j

� diĵt ð7Þ

of2i
ox2j

¼ ð�x1i þ x2iÞ
ôt
ox2j

þ diĵt ð8Þ
To simplify the stiffness expressions (5)–(8) requires further expansion of the rate of change of the ten-
sion coefficient with position of the nodes. A basic assumption for pin-jointed bars if that the tension in a
particular bar varies only with the extension, or equivalently the length, of that bar. It is thus sensible to
write
ôt
ox1j

¼ d̂t
dl

ol
ox1j

;
ôt
ox2j

¼ d̂t
dl

ol
ox2j

ð9Þ
where geometry shows that
ol
ox1j

¼ nj;
ol
ox2j

¼ �nj ð10Þ
and hence
ôt
ox1j

¼ d̂t
dl

nj;
ôt
ox2j

¼ � d̂t
dl

nj ð11Þ
The rate of change of tension coefficient with length, d̂t=dl, can be written as
d̂t
dl

¼ dðt=lÞ
dl

¼ 1

l
dt
dl

� t

l2
¼ 1

l
dt
dl

� t̂
� �

ð12Þ
The rate of change of tension with respect to length of the bar, dt/dl, is simply the axial stiffness. For
small strains of a linear-elastic bar with cross-sectional area A, Young�s modulus E, and initial length l0,
dt/dl = AE/l0. However, we will only assume that the tension is differentiable, although this does imply that
we are dealing with an elastic system, and don�t have a cable at its rest-length. Within this assumption, to
maintain generality, we will define the axial stiffness, dt/dl, as g, a bar parameter that may vary with bar
length, giving
d̂t
dl

¼ g � t̂
l

ð13Þ
To simplify notation further, define a modified axial stiffness, ĝ ¼ g � t̂, giving
d̂t
dl

¼ ĝ
l

ð14Þ
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Substituting (14) into (11) gives
ôt
ox1j

¼ ĝnj
l

;
ôt
ox2j

¼ � ĝnj
l

ð15Þ
and hence the stiffness Eqs. (5)–(8) can be written, noting that (x1i�x2i)/l = ni, as
of1i
ox1j

¼ niĝnj þ diĵt;
of1i
ox2j

¼ �niĝnj � diĵt ð16Þ

of2i
ox1j

¼ �niĝnj � diĵt;
of2i
ox2j

¼ niĝnj þ diĵt ð17Þ
or, in vector form
of1

ox1

¼ nĝnT þ t̂I;
of1

ox2

¼ �nĝnT � t̂I ð18Þ

of2

ox1

¼ �nĝnT � t̂I;
of2

ox2

¼ nĝnT þ t̂I ð19Þ
Thus, for a single bar, the tangent stiffness matrix, Ks, relating small changes in nodal position to small
changes in nodal forces
df1
df2

� �
¼ Ks

dx1

dx2

� �
ð20Þ
is given by
Ks ¼
n

�n

� �
½ĝ� nT �nT

� �
þ t̂I �t̂I

�t̂I t̂I

� �
ð21Þ
which can be written as
Ks ¼ as½ĝ�aTs þ Ss ð22Þ

where as is the equilibrium matrix for a single bar,
as ¼
n

�n

� �
ð23Þ
relating bar tension and nodal force
as½t� ¼
f1

f2

� �
ð24Þ
and Ss is the stress matrix for a single bar,
Ss ¼
t̂I �t̂I
�t̂I t̂I

� �
ð25Þ
2.2. Complete structure

We can find the tangent stiffness matrix for an entire structure simply by adding together the tangent
stiffness matrices for individual bars. To do this the tangent stiffness matrices for individual bars must first
be embedded in a larger coordinate system for the entire structure.
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Consider a structure consisting of n nodes. Define a vector of nodal forces f and a vector of nodal coor-
dinates x, where
f ¼

f1
f2

..

.

fn

2
6664

3
7775; x ¼

x1

x2

..

.

xn

2
6664

3
7775 ð26Þ
and fi is the two- or three-dimensional force vector at node i, and xi is the two- or three-dimensional posi-
tion vector of node i.

Consider a bar p connecting nodes i and j with current length lp, carrying a tension tp, a tension coeffi-
cient t̂p, and having a modified axial stiffness ĝp. Define a unit vector nij along bar p,
nij ¼
xi � xj

lp
¼ �nji ð27Þ
The equilibrium matrix for this bar in the global coordinate system, ap, is defined so that the nodal forces
fp in equilibrium with a tension tp in bar p are given by
ap½tp� ¼ fp ð28Þ

and hence has all components zero, apart from those corresponding to the nodes at the end of the bar, i
and j,
ap ¼

ap1

ap2

..

.

apn

2
66664

3
77775; api ¼ nij; apj ¼ nji ¼ �nij; apk ¼ 0 if k 6¼ i and k 6¼ j ð29Þ
The stress matrix for the single bar p joining nodes i and j, in a global coordinate system, can be defined
in terms of 2 by 2 (in 2D) or 3 by 3 (in 3D) submatrices splm ,
Sp ¼

sp11 sp12 � � � sp1n
sp21 sp22

..

. . .
.

spn1 spnn

2
66664

3
77775 ð30Þ
where
spii ¼ spjj ¼ t̂pI; spij ¼ spji ¼ �t̂pI ð31Þ
and all other splm ¼ 0.
The tangent stiffness matrix for bar p, Kp, can be written by embedding (22) in the global coordinate

system,
Kp ¼ ap½ĝp�aTp þ Sp ð32Þ
Consider a structure made up of b bars. The total tangent stiffness, K, can be found by adding up the
tangent stiffness due to each of the bars
K ¼
Xb

p¼1

Kp ¼
Xb

p¼1

ap½ĝp�aTp þ
Xb

p¼1

Sp ð33Þ
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which can be written as
K ¼ AbGAT þ S ð34Þ

where A is the equilibrium matrix for the entire structure
A ¼ a1 a2 � � � ab½ � ð35Þ

bG is a diagonal matrix of modified axial stiffnesses,
bG ¼

ĝ1
ĝ2

. .
.

ĝb

2
66664

3
77775 ð36Þ
and S is the stress matrix for the entire structure. S can be defined in terms of component (2 · 2) or (3 · 3)
submatrices slm
S ¼

s11 s12 � � � s1n

s21 s22

..

. . .
.

sn1 snn

2
66664

3
77775 ð37Þ
where, for l = m,
sll ¼ t̂llI ð38Þ

and t̂ll is the sum of the tension coefficients of all the bars that meet at node l, and, for l 5 m,
slm ¼ �t̂lmI ð39Þ

where t̂lm is equal to the tension coefficient in the bar joining node i and j if the nodes are connected by a
bar, or is zero otherwise.
3. Comparison with other formulations

3.1. Conventional stiffness/geometric stiffness formulation

A conventional formulation of the tangent stiffness would describe the tangent stiffness as consisting of
two parts, a material stiffness, and a geometric stiffness. The material stiffness corresponds to the stiffness
when it is assumed that the overall geometry of the structure does not change due to load, or alternatively
that the structure is initially unstressed. The geometric stiffness corresponds to the stiffness due to the reori-
entation of stressed members. It is instructive to compare these terms with the new formulation. This can
easily be done by differentiating equilibrium expressions, as in Section 2. However, in contrast to the new
derivation in Section 2, we will work directly with tension in the bar as a variable, rather than forming the
tension coefficient.

Starting with the equilibrium expressions, (1) and (2), differentiating with respect to the position of the
nodes gives
of1i
ox1j

¼ ni
ot
ox1j

þ oni
ox1j

t;
of1i
ox2j

¼ ni
ot
ox2j

þ oni
ox2j

t ð40Þ
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of2i
ox1j

¼ �ni
ot
ox1j

� oni
ox1j

t;
of2i
ox2j

¼ �ni
ot
ox2j

� oni
ox2j

t ð41Þ
The first term in each of the expressions, e.g. (ni ot/ox1j), together make up the material stiffness matrix.
Following similar working to that in Section 2, it is possible to finally write, for a single bar, the material
stiffness matrix Ksm in the form
Ksm ¼ as½g�aTs ð42Þ

and for the complete structure the material stiffness matrix, Km, is given by
Km ¼ AGAT ð43Þ

The geometric stiffness matrix, Kg, can be derived from the difference between (43) and (34),
Kg ¼ �AbTAT þ S ð44Þ

where bT is the diagonal matrix of tension coefficients. Thus, part of the geometric stiffness has exactly the
same structure as the material stiffness matrix; the new formulation (34) lumps these terms together.

For most conventional structures, it is reasonable to assume that the modified axial stiffness for any bar ĝ,
will be little different to the axial stiffness g. As a �worst case�, consider a linear-elastic bar with axial stiffness
AE/l that carries tension just less than that required to cause yield. The tension will be given byAE�y, where �y
is the yield strain, and thus the modified axial stiffness is ĝ ¼ g � t=l ¼ ðAE=lÞð1� �yÞ. Thus, for bars where
�y�1, the modified axial stiffness will be little different from the conventional axial stiffness, and certainly po-
sitive. This is not universally true, however. For instance it is possible for wound springs to have zeromodified
axial stiffness, by ensuring that in an initial, closely wound, state they carry a tension equivalent to having a
zero rest length, a principle used to advantage in Anglepoise lamps (French and Widden, 2000).

3.2. Equilibrium matrices and the product-force approach

Eq. (43) can be considered as the decomposition of the material stiffness matrix into compatibility, equi-
librium, and bar-stiffness relationships. The equilibrium matrix and the bar stiffness relationships have al-
ready been described. It is straightforward to show, by e.g. a virtual work argument, that the transpose of
the equilibrium matrix, AT, is the compatibility matrix for the structure, also known as the rigidity matrix,
relating extensions of the bars to displacement of nodes. Consider a vector, e, of bar extensions, relative to
the current configuration,
e ¼

e1
e2
..
.

eb

2
6664

3
7775 ¼

dl1
dl2
..
.

dlb

2
6664

3
7775 ð45Þ
and a vector d of nodal displacements
d ¼ dx ¼

dx1

dx2

..

.

dxn

2
66664

3
77775 ð46Þ
e and d are related by
e ¼ ATd ð47Þ
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The nullspace of AT contains all mechanisms of the structure, nodal displacements corresponding to zero
member extension. If the nullspace is m-dimensional, the mechanisms can be described by a set of basis vec-
tors, m1. . .mm. If these mechanisms are written as the columns of a matrix D,
D ¼ m1 m2 � � � mm½ � ð48Þ
then a general mechanism m is given by
m ¼ Db ð49Þ

where b gives the coefficient of each of the basis mechanisms.

For any mechanism, the material stiffness matrix gives zero stiffness. The �material� force developed as
the mechanism is displaced is given by Kmm, where
Kmm ¼ AGATm ¼ AGATDb ¼ 0 ð50Þ

as ATD = 0. This result is also true if the modified axial stiffness is used, AbGATm ¼ 0. However, this does
not imply that the stiffness of a mechanism is zero, and Calladine and Pellegrino (1991) introduced a meth-
od to find this stiffness. The actual (linearized) force developed as any mechanism is actuated is given, using
the complete tangent stiffness matrix (34), by
f ¼ Km ¼ KDb ¼ AbGATDbþ SDb ¼ SDb ð51Þ

and the (linearized) work done during the deformation is given by
W ¼ 1

2
dTf ¼ 1

2
bTDTKDb ¼ 1

2
bTDTSDb ð52Þ
Calladine and Pellegrino (1991) described the matrix DTSD as a matrix Q; they commented that it was
symmetric, which it clearly is from this derivation. It is natural to consider Q as a reduced form of the stress
matrix, where motion is restricted only to to inextensional mechanisms of the structure. If Q is positive def-
inite, there is positive stiffness for any mechanism of the structure.

3.3. Rigidity theory and prestress stability

Connelly and Whiteley (1996) clearly anticipate the results in this paper by showing that a full account of
structural stiffness comes from two sources, a first order rigidity that can be written in terms of the rigidity
matrix (the transpose of the equilibrium matrix), and a term given by the stress matrix. However, the link
with tangent stiffness formulations if not immediately clear, largely because this work is not concerned with
finding particular numerical values, but rather with answering general questions about structural stability.
A further problem arises because of differences in notation, particularly as the rigidity theory literature uses
the term �stress� for what is defined in this paper as a �tension coefficient�.

Eq. (34) can be considered as a translation of the stiffness formulation given by Connelly and Whiteley
(1996) into more conventional engineering terms. The key point is that the basic structure of the equations
is the same, and this means that many of the further powerful results in Connelly and Whiteley (1996), and
related literature, can be directly translated and understood in conventional engineering terms.
4. Example

This section will analyze in three dimensions the structure shown in Fig. 1, using the new formulation of
the tangent stiffness matrix. Fig. 3 shows the same structure, but with a coordinate system added for pos-
sible nodal displacements, along with a bar numbering scheme. We define forces f21. . .f43 to be forces work
equivalent to the displacements d21. . .d43 shown.
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Fig. 3. Coordinate systems for the simple example structure. The bars are numbered I–VI, and any allowed displacement of node i in
direction j is denoted dij.
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The equilibrium matrix for the structure relates external forces to bar tensions, At = f, and is given by,
1 0 0 0 0 1=
ffiffiffi
2

p

0 0 �1 0 0 �1=
ffiffiffi
2

p

0 0 0 1 0 1=
ffiffiffi
2

p

0 0 1 0 1=
ffiffiffi
2

p
0

0 1 0 0 1=
ffiffiffi
2

p
0

0 0 0 0 0 0

2
666666664

3
777777775

tI
tII
tIII
tIV
tV
tVI

2
66666664

3
77777775
¼

d21

d31

d32

d41

d42

d43

2
66666664

3
77777775

ð53Þ
Although the matrix is square, it is clearly rank-deficient, and the null-space gives the state of self-stress
in the system, t0, in terms of an arbitrary constant, the tension T in bar I,
t0 ¼

T

T

T

T

�
ffiffiffi
2

p
T

�
ffiffiffi
2

p
T

2
666666664

3
777777775

ð54Þ
and hence, when the structure is unloaded, the tension coefficients in the bars are given by
tI
tII
tIII
tIV
tV
tVI

2
666666664

3
777777775
¼ T

L

1

1

1

1

�1

�1

2
666666664

3
777777775

ð55Þ
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Thus the modified axial stiffness matrix is given by
bG ¼ AE
L

1

1

1

1

1=
ffiffiffi
2

p

1=
ffiffiffi
2

p

2
666666666664

3
777777777775
� T

L

1

1

1

1

�1

�1

2
666666666664

3
777777777775

ð56Þ
The structure of the stress matrix is most clearly seen by first considering the stress matrix of an identical
structure that has been freed from its foundations, Sf. At each node, the sum of the tension coefficients in
the bars, t̂ii ¼ ð1þ 1� 1ÞT=L, which forms the diagonal terms in Sf. The off-diagonal terms t̂ij are the
negative of the tension coefficient in the bar, and are hence +T/L for the diagonal bars, and �T/L for
the others, giving
Sf ¼
T
L

I �I I �I

�I I �I I

I �I I �I

�I I �I I

2
666664

3
777775 ð57Þ
where I is a 3 · 3 identity matrix. The stress matrix for the actual restrained case can be found by crossing
out the rows and columns corresponding to restrained degrees of freedom, leaving
ð58Þ
Substituting the equilibrium matrix from (53), the matrix of modified axial stiffness given in (56) and the
stress matrix given in (58) into the complete tangent stiffness formulation (34) gives the complete tangent
stiffness matrix for the structure, K ¼ AbGAT þ S.

The nullspace of the transposed equilibrium matrix for the structure describes the one mechanism, the
out-of-plane movement of node 4,
m ¼

0

0

0

0

0

1

2
6666666666664

3
7777777777775

ð59Þ
And clearly for this mechanism, AbGATm ¼ 0 (as ATm = 0). Thus any stiffness must be given by the stress
matrix term, which gives the force (the product-force) as
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f ¼ Sm ¼ T
L

0

0

0

0

0

1

2
666666664

3
777777775

ð60Þ
and indeed, the reduced (1 · 1) stress matrix corresponding to this mechanism is given by
Sr ¼ mTSm ¼ T
L

ð61Þ
Thus the structure will have positive stiffness in all modes as long as T is positive, i.e. the outer four bars
are in tension, while the inner two bars are in compression.
5. Discussion

The tangent stiffness formulation presented in this paper is certainly not new. It appeared in Argyris and
Scharpf (1972), and has been used in much work since; a recent equivalent but extended derivation in a
large displacement, large strain, setting has been given by Murakami (2001), using the powerful tools of
continuum mechanics. Although the final formulation is not new, the present paper does give a new and
simple derivation of the tangent stiffness, and writes it in a form which allows comparison with other for-
mulations in the literature. A novel feature is the use of a modified axial stiffness, which for conventional
structures is little different from the conventional axial stiffness.

An important feature of this paper is that it links into the work in mathematical rigidity theory. This line
of research is often neglected in the engineering literature, despite the powerful results that have been de-
rived. This may partly be because of difficulties of notation, as well as the different underlying aims of the
work. This paper has shown that in fact the stiffness formulation given e.g. by Connelly and Whiteley
(1996) is directly compatible with a standard tangent stiffness formulation.

The paper also shows the links between tangent stiffness of a prestressed structure, and the product force
method of Pellegrino and Calladine, a link that has also been made by Murakami (2001). Recently, Tarnai
and Szabó (2002) have elucidated the link between the product force method and the geometric formula-
tions of Kuznetsov (e.g. Kuznetsov, 1991): together with the results in this paper this gives further unifica-
tion to seemingly disparate methods.
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